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THE NEWTONIAN ITERATIVE SCHEME

WITH SIMULTANEOUS CALCULATING

THE INVERSE OPERATOR

FOR THE DERIVATIVE OF NONLINEAR FUNCTION

I.V.Puzynin, I.V.Amirkhanov, T.P.Puzynina, E.V.Zemlyanaya

The modified iterative Newtonian procedure for solving nonlinear functional
equation is proposed. The inversion for the derivative of nonlinear function on
each iterative step is replaced by multiplication of some linear operators. On the
basis of the proposed procedure an algorithm and a program for solving the
eigenvalue problem for integral equation are developed. The calculations
demonstrating a convergence of the algorithm and its efficiency for vector com-
puter are performed.

The investigation has been performed at the Laboratory of Computing Tech-
niques and Automation, JINR.

HploTOHOBCKAg HTEPAMOHHAS CXEMA
C OJHOBPEMCHHKIM BRYMCICHHEM ONEpaTopa,
006paTHOrO K NPOH3BOAHOK HEJIHHEHHOM QYHKIHH

WU.B.Ily3uuus u ap.

Ipernoxer MOAMPHULIMPOBAHHDIH HHIOTOHOBCKHIA UTEPALIMOHHBINM NMPOLIECC
IS PEHICHMS HESMHEANONO PYHKUMOHANLHONO YPaBHEHUS, 8 KOTOpoM ofpa-
IHEHUE ONEPATOPA NPOM3IBOAHON HeauHeAHO! PYHKIMM 3AMEHIETCS HA KaX-
JAOM L1are NePEeMHOXEHHEM BCIIOMOTATENbHBIX MMHEHHBIX onepaTopos. Ha oc-
HOBe npeanaraemMoit Mompukanuy paspaboTaHnl aNTOPUTM H NPOrpaMmMa ns
peueHMs 3a8a4M Ha COOCTBEHHLIE 3HAUEHMS Ui UHTETPANBHOTO YPABHEHHS.
IlpoBeneHbl WMCAEHHBIE PACYUETbl, WUNIOCTPUPYIOINE CXOAUMOCTb ONMMCbl-
BaemMoro npouecca U ero 3PHEKTUBHOCTD AN BEKTOPHLIX BbIYMCAMUTENBHBIX
cHUCTEM.

Pa6ora sbinosivena B JIaGopaTopun BLIUMCIHMTENBHOH TEXHHKH H ABTOMA-
maauun OUSH.

Introduction

In the context of the development of vector-parallel computers the prob-
lem of elaborating special algorithms and programs for the effective using
possibilities of such computers is very actual. An algorithm using some pos-
sibilities of these computers is presented. This algorithm is developed on the
basis of modified continuous analogue of the Newton’s method [!]. The
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inversion of the derivative operator for nonlinear function on each iterative
step is replaced by three multiplications of some linear operators.

The idea of such an approach for the finding of inverse matrixes was
proposed in Refs. {2,3 ]in application to the method of the parameter varia-
tion. Its advantage is in the absence of the division operations during all cal-
culations. Therefore, the division on a small number is excluded and the
accuracy and stability of the calculations increase.

Below the iterative procedure is described for the nonlinear equation in
B-space, the developed on this basis scheme for solving the eigenvalue prob-
lem for the integral equation is presented.

The efficiency of the algorithm proposed for system CONVEX C120 has
been confirmed by testing calculations for the Schroedinger integral equa-
tion with the Coulomb potential in the impulse space /4/.

1. The Modified Algorithm

In accordance with the generalized continuous analogue of the Newton
method for a nonlinear functional equation in B-space

$(z) =0 1))

we construct the evolutionary equation with respect to additional para-
meter ¢

2ot 2(0) = —9(t, 2(1)), 05 <o @
with the initial condition z(0) = z,.
A parametrization ¢ = ¢(t, z(1)) is performed so that for £ = 0 we have a
simple equation
#(0, 2(0)) = ¢(z) =0,
which can be solved easily and lim ¢(1, z(1)) = ¢(2).
One of variants of the para:netrization can be performed by introducing

the scalar function g(f) [5], the so-called «function for including a pertur-
bation»: g(0) = 0, lim g(7) = 1, and representing the function #(t,z(1)) as a

1-»00

sum
Pt 2(1)) = Po(2(0)) + £(1) Ip(2(1)) — #o(2()) ).
From Eq.(2) designating A(f) = ¢;(t, 2(#)) we obtain

dz

S=- AT 1901 20) + ¢;(t, (1) ). @
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Since the integral of Eq.(2) is ¢(¢, z(1)) = e ¢(0, z), then for t » o,

Il #(, 2(0) || 0, and z(7) converges to desired solution z°*.
The discrete approximation of Eq.(3) with respect to the continuous
parameter t: (zo, fe.. tk); L= 0, Ly~ 4 =T is performed in the frame-

k of the E
work of the Euler method 2, ) =2(1) +1,V,, “

where ,
V== B(t) ¢, (1) + o4, (1)) ),
Calculating an iterative correction V, and step 7, for each 1,, we receive

a new approximation z(#, _,) to solution z",

The iterative procedure should be continued until the next relation is
fulfilled:
Il ¢(tkr z(tk))” se, 8)
where ¢ > 0 is a given small number.
The convergence of this iterative procedure is justified in Refs. [1,5].

Let us turn to the description of the proposed modified iterative proce-
dure. Let us consider the following system of functional-operator equations

[#(2) =0,
{BA ~-1=0, ©)

where A = ¢;, B = A", Iis the unit operator.

Introducing the continuous parameter #(0 < 7< ») and coming to the
evolutionary equations system, we obtain:

& 801, 2() = - 901, (),

d @)
P7 [B(DA(1) — Il =1 - B()A(1).
After simple transforms we have finally:
£ 1) = - BO) 19(t, 2(0) + $(1, () ), ©

g; B(f) = U1 - B({)(A(1) + A'(1)) 1B(2).

As a result of discrete approximating of Egs.(8) by the Euler scheme,
24 41= At )and B, = B(1, ) can be calculated on each iterative step if

z, and Bk are known:
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=5t Ve ©
By =Bty W,

where
V== B Ip(t, 2) + $ 1 7)),
W, = Il = By(A + A,)1B,. 10
Thus, having initial approximations z,, B, all next approximations Z,
- B, can be found sequentially.
The iterative procedure is continued until the relation (15) and the fol-
lowing relation will be satisfied
| B A, —1I]|<e. (D
The practical calculagions show that By= A_l(zo) is the best initial ap-
proximation for B.

2. Solution of the Eigenvalue Problem
for Integral Equation

N

We consider a following equation:

R
$(2) = ¥(x) (Q(x) —A) + a [ K(x, x') W(x")dx' =0, (12)
o .
where z = ()(x), 1) and the normalization condition

R ;
j Y(x)dx - N=0. 13

Let us introduce parameter ¢, 0 < 1< « and the function g(f) =1 — ¢ -

Then ¢(1, z) we represent as follows

(0, 2) = ¢o(2) + £(0) ($(2) - ¢o(z'))- (14
We suppose that ¢ (z) = 0 is some simple function equation with known
solution z,, being used as on initial approximation.

Taking into account ‘z(t) = ((x, £),A(f)) and turning our attention to
evolutionary equation, we receive for Eq.(14):

[(@o(2())), + &) L@((2))), — @O, 11y, =
= Ig(z(0) + (8() + £(0) (B(z(1) — po(2())) 1 —
~ [@o(=B)); + &) (BB)); — (o)) 1A,0). as
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Using the method described in Sec.1 and designating V(%) = M, 1) &=

= g(tk),g;( = g'(tk), V= y;(x, Uiy = A;(tk), B,= Ak"', taking into account
Egs. (12), (14), we obtain for each A
v, == BIG, +u,F,],
W,=lI—ByA, + Akl) 18,, (16)

where :
A (i (0) = ¢4 (z)v,(x) + £, [(Q(x) — Ay (x) +
R y

+a { K(x, x) vi(x)dx = ¢ (2)v,(9) ], an
y

4 () = (¢;,y(z,‘)); V(D)+ g 1Q(X) — Ay, (x) + ;f K(x, x)vy(x)dx -
- ¢;,y(z,‘)vk(x) 1~ g (x) Ly + (4’6}2/)); I (18)

Gy = Po(z) + (8 + &) X
X [(Q(x) — 1) y,(x) + @ z K(x, x) y(x)dx = go(zp)), (19

F, = ¢ol(zk) -g(1+ ¢01(zk)). 20)
Iterative correction v is calculated in the following way:

V= 2l)+ ,ukvﬁz), 210
where
W= - B,G,, v£2)= ~ BF,. (22)

Formula for the calculation of u g results " from the normalization condi-

tion (13): R
N = J 30 00 = 2vD())dx

ny=—>2 : (23)

R
J 2y, (VP (x)dx
0

After the calculation of iterative corrections u e Y Wk one can find the

new approximations by the Euler scheme:
Yer1 =Nt TV
A=At T,

B, =B+t W,. (24)

k k7 k
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The numerical approximation of Eq.(12) on the discrete mesh for x:

0 = x,<x,<...<x = R) reduces to the system of n algebraic equations:
(2 n

;= Q- 1)+a2 K, y& 25)

where y, = y(x), Q; = Q(x), K = K(x; xj), §j are coefficients of the quad-
rature formula of the numencal integrating. Operators A, A;, F,.Gin (16)—
(20) are approximated by matrices {aij}, {?i‘.j} and vectors (F‘.), (G)) corres-
pondingly. In particular, the matrix elements a and c'z'ij on kth iterative
step are determined as follows:

= (0 - I ()
.a,.l._a,(.j)+ g l(Q, — 1) 8+ aK £, — aD), (26)

a; =30 +g1(Q-1)8,+a Ikt —aD1-glu +3aM), @D

where éij is the Kronecker symbol, agl) and a "(J) are elements of matrices
approximating the operators %o (zk) and [¢o (zk) ]' correspondingly on the
discrete mesh. ’ ’

We note that the additional normalization of function y,(x) for each ite-
ration essentially improves the convergence of the iterative procedure.

3. The Program Realization

In order to solve Eq.(12) numerically two program complexes on the
FORTRAN-77 are developed:

a) CANMIM realizes the iterative procedure (3)—(4) with the calcu-
lation of matrix B, = A;' by inverse of A 4 On each iteration (with the help of
a standard subprogram MATIN2 from the CERNLIB [6 ]).

6) CANMIT realizes the iterative procedure (6)—(10) where B, is
parallel calculated in iterations.

Coefficients {gj} for the test presented below are selected in accordance
with the Gregory formula [7). The step 1, was calculated by algorithms

described in ref. [8 ]. Test calculations and comparison of time operation of
the two programs are performed.
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When comparing schemes (3)—(4) and (6)—(10), it can be seen that
the scheme (3) —(4) contains one inverse of matrix A, and in scheme (6)— (10)

it is replaced by three matrix multiplications: BA, BA;. [ — BA - BA; 1B.

Should be noted we succeeded in finding the conditions in which the
number of iterations for two processes is identical. Taking into account that
in the scalar variant of the realization the time of the inversion of one matrix
is approximately equal to the time of multiplication of two matrixes, the ex-
pected calculation time for the scheme (6)—(10) is thrice more than that for
the scheme (3)—(4). However, the matrix multiplication is more preferable
than the matrix inverse from the point of view of vector representation of
operations. It can be expected that algorithm (6)—(10) will give an advan-
tage of time on the vector computer. Naturally, this advantage will be
obtained at the expense of additional of the computer memory required for
additional matrixes.

4. Numerical Example

In the present paper the proposed method is illustrated by the solving of
the Schroedinger equation in impulse representation for the Coulomb po-
tential [4].

This equation is as follows:

¢(2) = (- ) wp) - 2Z { dp’ In

with the normalization condition

p+p
A "N = 8
,,._,,'y(p) 0 (28)

J ¥wdp=1,
0

where z = (¥(p), AL, 4 is eigenvalue, A = 2E, E is energy level. One of analy-
tical solutions for Z = 1 is following

. ] 2
A = -1.0, y ) = ‘/;(pz-i- 1)2 .

To eliminate the singular point p = p’ let us transform Eq.(28) in the
following way

@'~ 050) = 22 ap'1n 2255 (06") - o)) - 22001, =0,
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p+p
p-p
point has a finite limit equal to 0.

Thus, this equation has the next form:

p+
p—

(-]
where I, = f dp'In l | In this case the integrand function in singular
0

_R '
(02— 2Z1,— M)y(p)- 2Z { dp’ lnl z, l ((P') = Wp)) =0, R~ w. (29)

Choosing a finite interval 0 < p < R, R>> 1, introducing a discrete
mesh on parameter p and approximating the Eq.(29) numerically, we obtain

; n p;+ p'.
a system (25), where Q= p? tal +a 2 Kiffj, Kij =In [—1,
j=1 pl'— p]

a = — 2Z. The solving of Eq.(29) is performed according to the scheme des-
cribed in Sec.2 and defined by formulas (15)—(27). As an initial approxi-

mation for y(p) the function y,(p) = pe”?, ¢,(2) = (c — 4) ¥(p) (c = const)

was used.
The numerical investigation of the convergence of the discrete solutions
to the precise ones with respect to mesh parameters A4 and R was performed.

In Table 1 for A;= — 1 there is a dependence of the eigenvalues Al A of

thq discrete problem on the mesh step A. Results are given for the scheme
(6)—(10) on the sequence of three twice condensing meches with steps
h, h/2, h/4. The obtained value of

| o= 14,— A, 1 /14, =4, ~ 8.1
corresponds to theoretical accuracy of the Gregory formula O(h3).

Table 1. Interval [0, 30}

n h 1 An
151 0.2 ) . = 1.00031044
301 0.1 : - - 1.00009837
601 0.05 - 1.00007235

The comparison analysis of execution time for programs CANMIM and
CANMIT on different computers has particular interest. It should be noted
that the programs use only library programs of linear algebra without some
special optimizations with respect to operation systems and special features
of the computer. In Tables 2a—2c the dependence of the execution time T
(sec) for each program on the number of mesh points n for problem under
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Table 2a. Interval [0, 10], n = 101

SCHEME PROGRAM 2, 3, T T,/T,
33—« CANMIM —~0.997 1.37% 92 3.01
6)—(10) CANMIT -0.997 1.4E73 274

Table 2b. Interval [0, 20], n = 201

SCHEME PROGRAM 1, s, T T,/T,
3)—(@ CANMIM —-0.998 11E73 623 3.19
(6)—(10) CANMIT —0.998 1.1E7S 1989

Table 2c. Interval [0, 30}, n = 301

SCHEME PROGRAM A, s, T T,/T,
3)—« CANMIM ~1.0001 1.06E~5 1903 2.94
(6)—(10) CANMIT -1.000098 | 1.4ES 5597

solution are presented for VAX 8350. Besides these Tables demonstrate a
convergence of eigenvalues of the discrete problem when increasing para-

meter R. Everywhere & = 0.1,¢ = 1074, 4 = — 0.9, 8 = 0.1.

As is obvious from the Tables, both algorithms for identical parameters
R and A and similar values of residual 0 & have equal number X of iterations.

It is also seen that the program CANMIT spends thrice more execution
time than the program CANMIM.

In order to check up the possibilities of the vector representation of ope-
rations on the level of the operation system CONVEX C120, each program
complex was executed twice:

1) without all optimization parameters of translation (TC — time of cal-
culation);

2) with the optimization parameter -O2 (TCO2 — time of calculation
with the vector representation of operations).

In Table 3 the execution times TC and TCO2 (sec) and relation
TC/TCO2 characterizing a property of «accelerating the calculations» are

presented for both schemes. Besides, for comparison the execution times for
the system VAX 8350 and for SUN Spark Station 2 are given.
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Table 3. Inferval [0, 10], n = 101

VAX SUN CONVEX
SCHEME PROGRAM TC TCO2 TC/TCO2
3)—(4) CANMIM 92 15 3t 12 = 2.6
©6)—10 CANMIT 274 48 91.9 7.8 =11.8

From Table 3 it follows that the scheme (6)—(10) is more effective for
the vector system using only one of the possibilities of the CONVEX ope-
ration system.

In the considered case the vector representation gives a relative accele-
ration of working this scheme nearly 1.5 times if comparing with the scheme
3)—4).

Much greater advantage is observed if comparing the execution times of
vector variant of the CANMIT-program with the scalar variants of this pro-
gram and the CANMIM-program.

Conclusion

The aim of the performed numerical experiences is to demonstrate
advantages of the proposed iterative procedure for its realization on vector
computers. Special methods of vector representation of operations for cal-
culations and special features of solved problems such as, for instance, the
symmetry of integral operator kernel are not knowingly used in the calcu-
lations. Calculations were performed on comparatively sparse meshes in
order to compare the work of the programs on different computers including
computers with relatively small memory capacity.

The Newton iterative scheme for solving the nonlinear equations with
simultaneous iterations of the inversion operator to derivative of nonlinear
function is perspective for using on the vector computing systems with suf-
ficiently large memory capacity or a system of external memory with fast
access. The efficiency of the corresponding programs can be significantly
increased by using special methods of vector and parallel calculations on
multiprocessor computers.

We thank the Commission of the European Communities for partial
‘financial support in the frame of the EC-Russia collaboration Contract
NeECRU002. ‘
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